Abstract
Abstract
Background
Evaluating the accuracy of extrapulmonary tuberculosis (TB) tests is challenging due to lack of a gold standard. Latent class analysis (LCA), a statistical modeling approach, can adjust for reference tests’ imperfect accuracies to produce less biased test accuracy estimates than those produced by commonly used methods like composite reference standards (CRSs). Our objective is to illustrate how Bayesian LCA can address the problem of an unavailable gold standard and demonstrate how it compares to using CRSs for extrapulmonary TB tests.
Methods
We re-analyzed a dataset of presumptive extrapulmonary TB cases in New Delhi, India, for three forms of extrapulmonary TB. Results were available for culture, smear microscopy, Xpert MTB/RIF, and a non-microbiological test, cytopathology/histopathology, or adenosine deaminase (ADA). A diagram was used to define assumed relationships between observed tests and underlying latent variables in the Bayesian LCA with input from an inter-disciplinary team. We compared the results to estimates obtained from a sequence of CRSs defined by increasing numbers of positive reference tests necessary for positive disease status.
Results
Data were available from 298, 388, and 230 individuals with presumptive TB lymphadenitis, meningitis, and pleuritis, respectively. Using Bayesian LCA, estimates were obtained for accuracy of all tests and for extrapulmonary TB prevalence. Xpert sensitivity neared that of culture for TB lymphadenitis and meningitis but was lower for TB pleuritis, and specificities of all microbiological tests approached 100%. Non-microbiological tests’ sensitivities were high, but specificities were only moderate, preventing disease rule-in. CRSs’ only provided estimates of Xpert and these varied widely per CRS definition. Accuracy of the CRSs also varied by definition, and no CRS was 100% accurate.
Conclusion
Unlike CRSs, Bayesian LCA takes into account known information about test performance resulting in accuracy estimates that are easier to interpret. LCA should receive greater consideration for evaluating extrapulmonary TB diagnostic tests.
Funder
Fonds de Recherche du Québec - Santé
Deutsches Zentrum für Infektionsforschung
Canada Excellence Research Chairs, Government of Canada
Canadian Institutes of Health Research
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference31 articles.
1. World Health Organization. Global Tuberculosis Report 2020. Geneva: World Health Organization; 2020.
2. Chakravorty S, Simmons AM, Rowneki M, et al. The New Xpert MTB/RIF Ultra: improving detection of mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio. 2017;8(4):e00812–17.
3. Kohli M, Schiller I, Dendukuri N, et al. Xpert((R)) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018;8:Cd012768.
4. Schiller I, van Smeden M, Hadgu A, Libman M, Reitsma JB, Dendukuri N. Bias due to composite reference standards in diagnostic accuracy studies. Stat Med. 2016;35(9):1454–70. https://doi.org/10.1002/sim.6803.
5. Christopher DJ, Schumacher SG, Michael JS, Luo R, Balamugesh T, Duraikannan P, et al. Performance of Xpert MTB/RIF on pleural tissue for the diagnosis of pleural tuberculosis. Eur Respir J. 2013;42(5):1427–9. https://doi.org/10.1183/09031936.00103213.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献