The development and validation of a prognostic model to PREDICT Relapse of depression in adult patients in primary care: protocol for the PREDICTR study

Author:

Moriarty Andrew S.ORCID,Paton Lewis W.,Snell Kym I. E.,Riley Richard D.,Buckman Joshua E. J.,Gilbody Simon,Chew-Graham Carolyn A.,Ali Shehzad,Pilling Stephen,Meader Nick,Phillips Bob,Coventry Peter A.,Delgadillo Jaime,Richards David A.,Salisbury Chris,McMillan Dean

Abstract

Abstract Background Most patients who present with depression are treated in primary care by general practitioners (GPs). Relapse of depression is common (at least 50% of patients treated for depression will relapse after a single episode) and leads to considerable morbidity and decreased quality of life for patients. The majority of patients will relapse within 6 months, and those with a history of relapse are more likely to relapse in the future than those with no such history. GPs see a largely undifferentiated case-mix of patients, and once patients with depression reach remission, there is limited guidance to help GPs stratify patients according to risk of relapse. We aim to develop a prognostic model to predict an individual’s risk of relapse within 6–8 months of entering remission. The long-term objective is to inform the clinical management of depression after the acute phase. Methods We will develop a prognostic model using secondary analysis of individual participant data drawn from seven RCTs and one longitudinal cohort study in primary or community care settings. We will use logistic regression to predict the outcome of relapse of depression within 6–8 months. We plan to include the following established relapse predictors in the model: residual depressive symptoms, number of previous depressive episodes, co-morbid anxiety and severity of index episode. We will use a “full model” development approach, including all available predictors. Performance statistics (optimism-adjusted C-statistic, calibration-in-the-large, calibration slope) and calibration plots (with smoothed calibration curves) will be calculated. Generalisability of predictive performance will be assessed through internal-external cross-validation. Clinical utility will be explored through net benefit analysis. Discussion We will derive a statistical model to predict relapse of depression in remitted depressed patients in primary care. Assuming the model has sufficient predictive performance, we outline the next steps including independent external validation and further assessment of clinical utility and impact. Study registration ClinicalTrials.gov ID: NCT04666662

Funder

National Institute for Health Research

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3