Abstract
Abstract
Background
Osteoporosis poses a growing healthcare challenge owing to its rising prevalence and a significant treatment gap, as patients are widely underdiagnosed and consequently undertreated, leaving them at high risk of osteoporotic fracture. Several tools aim to improve case-finding in osteoporosis. One such tool is the Fracture Risk Evaluation Model (FREM), which in contrast to other tools focuses on imminent fracture risk and holds potential for automation as it relies solely on data that is routinely collected via the Danish healthcare registers. The present article is an analysis protocol for a prediction model that is to be used as a modified version of FREM, with the intention of improving the identification of subjects at high imminent risk of fracture by including pharmacological exposures and using more advanced statistical methods compared to the original FREM. Its main purposes are to document and motivate various aspects and choices of data management and statistical analyses.
Methods
The model will be developed by employing logistic regression with grouped LASSO regularization as the primary statistical approach and gradient-boosted classification trees as a secondary statistical modality. Hyperparameter choices as well as computational considerations on these two approaches are investigated by an unsupervised data review (i.e., blinded to the outcome), which also investigates and handles multicollinarity among the included exposures. Further, we present an unsupervised review of the data and testing of analysis code with respect to speed and robustness on a remote analysis environment. The data review and code tests are used to adjust the analysis plans in a blinded manner, so as not to increase the risk of overfitting in the proposed methods.
Discussion
This protocol specifies the planned tool development to ensure transparency in the modeling approach, hence improving the validity of the enhanced tool to be developed. Through an unsupervised data review, it is further documented that the planned statistical approaches are feasible and compatible with the data employed.
Funder
University Library of Southern Denmark
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference38 articles.
1. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1):136.
2. Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I, Petterson C, et al. Mortality after osteoporotic fractures. Osteoporos Int. 2004;15(1):38–42.
3. Osnes EK, Lofthus CM, Meyer HE, Falch JA, Nordsletten L, Cappelen I, et al. Consequences of hip fracture on activities of daily life and residential needs. Osteoporos Int. 2004;15(7):567–74.
4. Marques A, Lourenço Ó, da Silva JA. The burden of osteoporotic hip fractures in Portugal: costs, health related quality of life and mortality. Osteoporos Int. 2015;26(11):2623–30.
5. International Osteoporosis Foundation. Key statistics for Europe. 2021. Available from: https://www.osteoporosis.foundation/facts-statistics/key-statistic-for-europe. 11.10.2022.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献