Individualised prediction of psychosis in individuals meeting at-risk mental state (ARMS) criteria: protocol for a systematic review of clinical prediction models

Author:

Bonnett Laura J.ORCID,Varese Filippo,Smith Catrin Tudur,Flores Allan,Yung Alison R.

Abstract

Abstract Background Psychotic disorders affect about 3% of the population worldwide and are associated with high personal, social and economic costs. They tend to have their first onset in adolescence. Increasing emphasis has been placed on early intervention to detect illness and minimise disability. In the late 1990s, criteria were developed to identify individuals at high risk for psychotic disorder. These are known as the at-risk mental state (ARMS) criteria. While ARMS individuals have a risk of psychosis much greater than the general population, most individuals meeting the ARMS criteria will not develop psychosis. Despite this, the National Institute for Health and Care Excellence recommends cognitive behavioural therapy (CBT) for all ARMS people. Clinical prediction models that combine multiple patient characteristics to predict individual outcome risk may facilitate identification of patients who would benefit from CBT and conversely those that would benefit from less costly and less intensive regular mental state monitoring. The study will systematically review the evidence on clinical prediction models aimed at making individualised predictions for the transition to psychosis. Methods Database searches will be conducted on PsycINFO, Medline, EMBASE and CINAHL. Reference lists and subject experts will be utilised. No language restrictions will be placed on publications, but searches will be restricted to 1994 onwards, the initial year of the first prospective study using ARMS criteria. Studies of any design will be included if they examined, in ARMS patients, whether more than one factor in combination is associated with the risk of transition to psychosis. Study quality will be assessed using the prediction model risk of bias assessment tool (PROBAST). Clinical prediction models will be summarised qualitatively, and if tested in multiple validation studies, their predictive performance will be summarised using a random-effects meta-analysis model. Discussion The results of the review will identify prediction models for the risk of transition to psychosis. These will be informative for clinicians currently treating ARMS patients and considering potential preventive interventions. The conclusions of the review will also inform the possible update and external validation of prediction models and clinical prediction rules to identify those at high or low risk of transition to psychosis. Trial registration The review has been registered with PROSPERO (CRD42018108488).

Funder

Health Technology Assessment Programme

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3