Prognosis and prediction of antibiotic benefit in adults with clinically diagnosed acute rhinosinusitis: an individual participant data meta-analysis

Author:

Hoogland JeroenORCID,Takada Toshihiko,van Smeden Maarten,Rovers Maroeska M.,de Sutter An I.,Merenstein Daniel,Kaiser Laurent,Liira Helena,Little Paul,Bucher Heiner C.,Moons Karel G. M.,Reitsma Johannes B.,Venekamp Roderick P.

Abstract

Abstract Background A previous individual participant data meta-analysis (IPD-MA) of antibiotics for adults with clinically diagnosed acute rhinosinusitis (ARS) showed a marginal overall effect of antibiotics, but was unable to identify patients that are most likely to benefit from antibiotics when applying conventional (i.e. univariable or one-variable-at-a-time) subgroup analysis. We updated the systematic review and investigated whether multivariable prediction of patient-level prognosis and antibiotic treatment effect may lead to more tailored treatment assignment in adults presenting to primary care with ARS. Methods An IPD-MA of nine double-blind placebo-controlled trials of antibiotic treatment (n=2539) was conducted, with the probability of being cured at 8–15 days as the primary outcome. A logistic mixed effects model was developed to predict the probability of being cured based on demographic characteristics, signs and symptoms, and antibiotic treatment assignment. Predictive performance was quantified based on internal-external cross-validation in terms of calibration and discrimination performance, overall model fit, and the accuracy of individual predictions. Results Results indicate that the prognosis with respect to risk of cure could not be reliably predicted (c-statistic 0.58 and Brier score 0.24). Similarly, patient-level treatment effect predictions did not reliably distinguish between those that did and did not benefit from antibiotics (c-for-benefit 0.50). Conclusions In conclusion, multivariable prediction based on patient demographics and common signs and symptoms did not reliably predict the patient-level probability of cure and antibiotic effect in this IPD-MA. Therefore, these characteristics cannot be expected to reliably distinguish those that do and do not benefit from antibiotics in adults presenting to primary care with ARS.

Funder

ZonMw

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3