Knowledge translation of prediction rules: methods to help health professionals understand their trade-offs

Author:

Hemming K.,Taljaard M.

Abstract

AbstractClinical prediction models are developed with the ultimate aim of improving patient outcomes, and are often turned into prediction rules (e.g. classifying people as low/high risk using cut-points of predicted risk) at some point during the development stage. Prediction rules often have reasonable ability to either rule-in or rule-out disease (or another event), but rarely both. When a prediction model is intended to be used as a prediction rule, conveying its performance using the C-statistic, the most commonly reported model performance measure, does not provide information on the magnitude of the trade-offs. Yet, it is important that these trade-offs are clear, for example, to health professionals who might implement the prediction rule. This can be viewed as a form of knowledge translation. When communicating information on trade-offs to patients and the public there is a large body of evidence that indicates natural frequencies are most easily understood, and one particularly well-received way of depicting the natural frequency information is to use population diagrams. There is also evidence that health professionals benefit from information presented in this way.Here we illustrate how the implications of the trade-offs associated with prediction rules can be more readily appreciated when using natural frequencies. We recommend that the reporting of the performance of prediction rules should (1) present information using natural frequencies across a range of cut-points to inform the choice of plausible cut-points and (2) when the prediction rule is recommended for clinical use at a particular cut-point the implications of the trade-offs are communicated using population diagrams. Using two existing prediction rules, we illustrate how these methods offer a means of effectively and transparently communicating essential information about trade-offs associated with prediction rules.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3