Sample size determination for point-of-care COVID-19 diagnostic tests: a Bayesian approach

Author:

Williamson S. FayeORCID,Williams Cameron J.,Lendrem B. Clare,Wilson Kevin J.

Abstract

Abstract Background In a pandemic setting, it is critical to evaluate and deploy accurate diagnostic tests rapidly. This relies heavily on the sample size chosen to assess the test accuracy (e.g. sensitivity and specificity) during the diagnostic accuracy study. Too small a sample size will lead to imprecise estimates of the accuracy measures, whereas too large a sample size may delay the development process unnecessarily. This study considers use of a Bayesian method to guide sample size determination for diagnostic accuracy studies, with application to COVID-19 rapid viral detection tests. Specifically, we investigate whether utilising existing information (e.g. from preceding laboratory studies) within a Bayesian framework can reduce the required sample size, whilst maintaining test accuracy to the desired precision. Methods The method presented is based on the Bayesian concept of assurance which, in this context, represents the unconditional probability that a diagnostic accuracy study yields sensitivity and/or specificity intervals with the desired precision. We conduct a simulation study to evaluate the performance of this approach in a variety of COVID-19 settings, and compare it to commonly used power-based methods. An accompanying interactive web application is available, which can be used by researchers to perform the sample size calculations. Results Results show that the Bayesian assurance method can reduce the required sample size for COVID-19 diagnostic accuracy studies, compared to standard methods, by making better use of laboratory data, without loss of performance. Increasing the size of the laboratory study can further reduce the required sample size in the diagnostic accuracy study. Conclusions The method considered in this paper is an important advancement for increasing the efficiency of the evidence development pathway. It has highlighted that the trade-off between lab study sample size and diagnostic accuracy study sample size should be carefully considered, since establishing an adequate lab sample size can bring longer-term gains. Although emphasis is on its use in the COVID-19 pandemic setting, where we envisage it will have the most impact, it can be usefully applied in other clinical areas.

Funder

Medical Research Council

Newcastle University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3