Control of annual reproductive cycle in the subtropical house sparrow (Passer domesticus): evidence for conservation of photoperiodic control mechanisms in birds

Author:

Trivedi Amit K,Rani Sangeeta,Kumar Vinod

Abstract

Abstract Background In many birds, day length (=photoperiod) regulates reproductive cycle. The photoperiodic environment varies between different seasons and latitudes. As a consequence, species at different latitudes may have evolved separate photoperiodic strategies or modified them as per their adaptive need. We studied this using house sparrow as a model since it is found worldwide and is widely investigated. In particular, we examined whether photoperiodism in house sparrows (Passer domesticus) at 27°N, 81°E shared features with those exhibited by its conspecifics at high latitudes. Results Initial experiment described in the wild and captive conditions the gonad development and molt (only in captives) cycles over a 12-month period. Both male and female sparrows had similar seasonal cycles, linked with annual variations in day length; this suggested that seasonal reproduction in house sparrows was under the photoperiodic control. However, a slower testis and attenuated follicular growth among captives indicated that other (supplementary) factors are also involved in controlling the reproductive cycle. Next experiment examined if sparrows underwent seasonal variations in their response to stimulatory effects of long day lengths. When birds were transferred every month over a period of 1 year to 16 hours light:8 hours darkness (16L:8D) for 17–26 weeks, there was indeed a time-of-year effect on the growth-regression cycle of gonads. The final experiment investigated response of house sparrows to a variety of light-dark (LD) cycles. In the first set, sparrows were exposed for 31 weeks to photoperiods that were close to what they receive in between the period from sunrise to sunset at this latitude: 9L:15D (close to shortest day length in December), 12L:12D (equinox, in March and September) 15L:9D (close to longest day length in June). They underwent testicular growth and regression and molt in 12L and 15L photoperiods, but not in 9L photoperiod. In the second set, sparrows were exposed for 17 weeks to photoperiods with light periods extending to different duration of the daily photosensitivity rhythm (e.g. 2L:22D, 6L:18D, 10L:14D, 14L:10D, 18L:6D and 22L:2D). Interestingly, a slow and small testicular response occurred under 2L and 10L photoperiods; 6L:18D was non-inductive. On the other hand, 14L, 18L and 22L photoperiods produced testicular growth and subsequent regression response as is typical of a long day photostimulation. Conclusion Subtropical house sparrows exhibit photoperiodic responses similar to that is reported for its population living at high latitudes. This may suggest the conservation of the photoperiodic control mechanisms in birds evolved over a long period of time, as a physiological strategy in a temporally changing environment ensuring reproduction at the best suited time of the year.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. Wingfield JC, Farner DS: Endocrinology of reproduction in wild species. Avian Biology. Edited by: Farner DS, King JR, Parkes KC. 1993, Academic Press, New York, IX: 163-277.

2. Jain N, Kumar V: Changes in food intake, body weight, gonads and plasma concentrations of thyroxine, luteinizing hormone and testosterone in captive buntings exposed to natural daylengths at 29°N. J Biosci. 1995, 20: 417-426.

3. Hau M: Timing of breeding in variable environments Tropical birds as model systems. Horm Behav. 2001, 40: 281-290. 10.1006/hbeh.2001.1673.

4. Deviche P, Small T: Photoperiodic control of seasonal reproduction: Neuroendocrine mechanisms and adaptation. Avian Endocrinology. Edited by: Dawson A, Chaturvedi CM. 2001, Narosa Publishing House, New Delhi, 113-128.

5. Hahn TP, MacDougall-Shackleton SA: Adaptive specialization, conditional plasticity, and phylogenetic history in the reproductive cue response system of birds. Phil Trans Royal Soc.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Germinated Wheat as a Potential Natural Source of Antioxidants to Improve Sperm Quality: A Canary Trial;Veterinary Sciences;2023-12-20

2. Seasonality in tropical birds;Journal of Experimental Zoology Part A: Ecological and Integrative Physiology;2022-08-18

3. Molecular and epigenetic regulation of seasonal reproduction in Terai tree frog (Polypedates teraiensis);Photochemical & Photobiological Sciences;2022-03-09

4. Reproductive and developmental toxicity in avian species;Reproductive and Developmental Toxicology;2022

5. Urban environment alter the timing of progression of testicular recrudescence in tree sparrow (Passer montanus);Environmental Science and Pollution Research;2021-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3