Author:
Speed Conrad W,Meekan Mark G,Bradshaw Corey JA
Abstract
Abstract
Background
Effective approaches for the management and conservation of wildlife populations require a sound knowledge of population demographics, and this is often only possible through mark-recapture studies. We applied an automated spot-recognition program (I3S) for matching natural markings of wildlife that is based on a novel information-theoretic approach to incorporate matching uncertainty. Using a photo-identification database of whale sharks (Rhincodon typus) as an example case, the information criterion (IC) algorithm we developed resulted in a parsimonious ranking of potential matches of individuals in an image library. Automated matches were compared to manual-matching results to test the performance of the software and algorithm.
Results
Validation of matched and non-matched images provided a threshold IC weight (approximately 0.2) below which match certainty was not assured. Most images tested were assigned correctly; however, scores for the by-eye comparison were lower than expected, possibly due to the low sample size. The effect of increasing horizontal angle of sharks in images reduced matching likelihood considerably. There was a negative linear relationship between the number of matching spot pairs and matching score, but this relationship disappeared when using the IC algorithm.
Conclusion
The software and use of easily applied information-theoretic scores of match parsimony provide a reliable and freely available method for individual identification of wildlife, with wide applications and the potential to improve mark-recapture studies without resorting to invasive marking techniques.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference45 articles.
1. Caughley G, Gunn A: Conservation Biology in Theory and Practice. 1996, Cambridge, MA., Blackwell Science
2. Lebreton JD, Burnham KP, Clobert J, Anderson DR: Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monog. 1992, 62: 67-118. 10.2307/2937171.
3. Whitehead H, Christal J, Tyack PL: Studying cetacean social structure in space and time. Cetacean Societies: Field Studies of Dolphins and Whales. Edited by: Mann J, Connor RC, Tyack PL and Whitehead H. 2000, Chicago and London, University of Chicago Press, 65-86.
4. Booth DJ: Synergistic effects of conspecifics and food on growth and energy allocation of a damselfish. Ecology. 2004, 85: 2881-2887.
5. Kohler NE, Turner PA: Shark tagging: A review of conventional methods and studies. Environmental Biology of Fishes. 2001, 60: 191-223. 10.1023/A:1007679303082.
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献