Author:
Tappeiner Christoph,Gerber Simon,Enzmann Volker,Balmer Jasmin,Jazwinska Anna,Tschopp Markus
Abstract
Abstract
Background
The aim of this study was to evaluate the visual acuity of adult zebrafish by assessing the optokinetic reflex. Using a modified commercially available optomotor device (OptoMotry®), virtual three-dimensional gratings of variable spatial frequency or contrast were presented to adult zebrafish. In a first experiment, visual acuity was evaluated by changing the spatial frequency at different angular velocities. Thereafter, contrast sensitivity was evaluated by changing the contrast level at different spatial frequencies.
Results
At the different tested angular velocities (10, 15, 20, 25, and 30 d/s) and a contrast of 100%, visual acuity values ranged from 0.56 to 0.58 c/d. Contrast sensitivity measured at different spatial frequencies (0.011, 0.025, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.55 c/d) with an angular velocity of 10 d/s and 25 d/s revealed an inverted U-shaped contrast sensitivity curve. The highest mean contrast sensitivity (±SD) values of 20.49 ± 4.13 and 25.24 ± 8.89 were found for a spatial frequency of 0.05 c/d (angular velocity 10 d/s) and 0.1 c/d (angular velocity 25 d/s), respectively.
Conclusions
Visual acuity and contrast sensitivity measurements in adult zebrafish with the OptoMotry® device are feasible and reveal a remarkably higher VA compared to larval zebrafish and mice.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference22 articles.
1. Fadool JM, Dowling JE: Zebrafish: a model system for the study of eye genetics. Prog Retin Eye Res. 2008, 27: 89-110. 10.1016/j.preteyeres.2007.08.002.
2. Beck JC, Gilland E, Tank DW, Baker R: Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol. 2004, 92: 3546-3561. 10.1152/jn.00311.2004.
3. Haug MF, Biehlmaier O, Mueller KP, Neuhauss SC: Visual acuity in larval zebrafish: behavior and histology. Front Zool. 2010, 7: 8-10.1186/1742-9994-7-8.
4. Mueller KP, Schnaedelbach ODR, Russig HD, Neuhauss SCF: VisioTracker, an innovative automated approach to oculomotor analysis. J Vis Exp. 2011, 10.3791/3556
5. Zou S-Q, Yin W, Zhang M-J, Hu C-R, Huang Y-B, Hu B: Using the optokinetic response to study visual function of zebrafish. J Vis Exp. 2010, 10.3791/1742
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献