Author:
Qi Yong,Longo Kenneth A,Giuliana Derek J,Gagne Samantha,McDonagh Tom,Govek Elizabeth,Nolan Anna,Zou Chaoseng,Morgan Kristen,Hixon Jeffrey,Saunders Jeffrey O,DiStefano Peter S,Geddes Brad J
Abstract
Abstract
Background
We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.
Results
Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.
Conclusions
These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Physiology,General Medicine
Reference33 articles.
1. Vestergaard ET, Djurhuus CB, Gjedsted J, Nielsen S, Moller N, et al: Acute effects of ghrelin administration on glucose and lipid metabolism. J Clin Endocrinol Metab. 2008, 93: 438-444. 10.1210/jc.2007-2018.
2. Longo KA, Charoenthongtrakul S, Giuliana DJ, Govek EK, McDonagh T, et al: Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice. Regul Pept. 2008
3. Sun Y, Asnicar M, Saha PK, Chan L, Smith RG: Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 2006, 3: 379-386. 10.1016/j.cmet.2006.04.004.
4. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, et al: Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest. 2005, 115: 3564-3572. 10.1172/JCI26002.
5. Wortley KE, del Rincon JP, Murray JD, Garcia K, Iida K, et al: Absence of ghrelin protects against early-onset obesity. J Clin Invest. 2005, 115: 3573-3578. 10.1172/JCI26003.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献