Author:
Gallis Jean-Louis,Tissier Pierre,Gin Henri,Beauvieux Marie-Christine
Abstract
Abstract
Background
Butyrate is the main nutrient for the colonocytes but the effect of the fraction reaching the liver is not totally known. A decrease in tissue ATP content and increase in respiration was previously demonstrated when livers were perfused with short-chain fatty acids (SCFA) such as butyrate, or octanoate.
In fed rats the oxidative phosphorylation yield was determined on the whole isolated liver perfused with butyrate in comparison with acetate and octoanoate (3 mmol/L). The rate of ATP synthesis was determined in the steady state by monitoring the rate of ATP loss after inhibition of (i) cytochrome oxidase (oxidative phosphorylation) with KCN (2.5 mmol/L) and (ii) glyceraldehyde 3-phosphate dehydrogenase (glycolysis) with IAA (0.5 mmol/L). The ATP flux, estimated by 31P Nuclear Magnetic Resonance, and the measured liver respiration allowed the ATP/O ratio to be determined.
Results
ATP turnover was significantly lower in the presence of butyrate (0.40 ± 0.10 μmoles/min.g, p = 0.001, n = 7) and octanoate (0.56 ± 0.10 μmoles/min.g, p = 0.01, n = 5) than in control (1.09 ± 0.13 μmoles/min.g, n = 7), whereas perfusion with acetate induced no significant decrease (0.76 ± 0.10 μmoles/min.g, n = 7). Mitochondrial oxygen consumption was unchanged in the presence of acetate (1.92 ± 0.16 vs 1.86 ± 0.16 for control) and significantly increased in the presence of butyrate (p = 0.02) and octanoate (p = 0.0004) (2.54 ± 0.18 and 3.04 ± 0.15 μmoles/min.g, respectively). The oxidative phosphorylation yield (ATP/O ratio) calculated in the whole liver was significantly lower with butyrate (0.07 ± 0.02, p = 0.0006) and octanoate (0.09 ± 0.02, p = 0.005) than in control (0.30 ± 0.05), whereas there was no significant change with acetate (0.20 ± 0.02).
Conclusion
Butyrate or octanoate decrease rather than increase the rate of ATP synthesis, resulting in a decrease in the apparent ATP/O ratio. Butyrate as a nutrient has the same effect as longer chain FA. An effect on the hepatic metabolism should be taken into account when large quantities of SCFA are directly used or obtained during therapeutic or nutritional strategies.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Physiology,General Medicine
Reference43 articles.
1. Beauvieux MC, Tissier P, Gin H, Canioni P, Gallis JL: Butyrate impairs energy metabolism in isolated perfused liver of fed rats. J Nutr. 2001, 131: 1986-1992.
2. Royall D, Wolever TM, Jeejeebhoy KN: Clinical significance of colonic fermentation. Am J Gastroenterol. 1990, 85: 1307-1312.
3. Rapport Glucides et Santé: Etat des lieux, évaluation et recommandations. 2004, Agence Française de Sécurité Sanitaire des Aliments, Maisons-Alfort: AFSSA
4. Nyman M, Asp NG, Cummings J, Wiggins H: Fermentation of dietary fiber in the intestinal tract: comparison between man and rat. Br J Nutr. 1986, 55: 487-496. 10.1079/BJN19860056.
5. Jacobash G, Schmiedl D, Kruschewsli M, Schmehl K: Dietary starch and chronic inflammatory bowel diseases. Int J Colorectal Dis. 1999, 14: 201-211. 10.1007/s003840050212.