Author:
Locher Chrystèle,Raux Mathieu,Fiamma Marie-Noelle,Morélot-Panzini Capucine,Zelter Marc,Derenne Jean-Philippe,Similowski Thomas,Straus Christian
Abstract
Abstract
Background
Breathing in humans is dually controlled for metabolic (brainstem commands) and behavioral purposes (suprapontine commands) with reciprocal modulation through spinal integration. Whereas the ventilatory response to chemical stimuli arises from the brainstem, the compensation of mechanical loads in awake humans is thought to involve suprapontine mechanisms. The aim of this study was to test this hypothesis by examining the effects of inspiratory resistive loading on the response of the diaphragm to transcranial magnetic stimulation.
Results
Six healthy volunteers breathed room air without load (R0) and then against inspiratory resistances (5 and 20 cmH2O/L/s, R5 and R20). Ventilatory variables were recorded. Transcranial magnetic stimulation (TMS) was performed during early inspiration (I) or late expiration (E), giving rise to motor evoked potentials (MEPs) in the diaphragm (Di) and abductor pollicis brevis (APB). Breathing frequency significantly decreased during R20 without any other change. Resistive breathing had no effect on the amplitude of Di MEPs, but shortened their latency (R20: -0.903 ms, p = 0.03) when TMS was superimposed on inspiration. There was no change in APB MEPs.
Conclusion
Inspiratory resistive breathing facilitates the diaphragm response to TMS while it does not increase the automatic drive to breathe. We interpret these findings as a neurophysiological substratum of the suprapontine nature of inspiratory load compensation in awake humans.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Physiology,General Medicine
Reference34 articles.
1. Aminoff MJ, Sears TA: Spinal integration of segmental, cortical and breathing inputs to thoracic respiratory motoneurones. J Physiol. 1971, 215: 557-575.
2. Sears TA, Aminoff MJ: Spinal integration of cortical, brainstem, and segmental inputs to thoracic respiratory motoneurons. Neurology. 1970, 20: 384-
3. Corfield DR, Murphy K, Guz A: Does the motor cortical control of the diaphragm 'bypass' the brain stem respiratory centres in man?. Respir Physiol. 1998, 114: 109-117. 10.1016/S0034-5687(98)00083-8.
4. Mehiri S, Straus C, Arnulf I, Attali V, Zelter M, Derenne JP, Similowski T: Responses of the diaphragm to transcranial magnetic stimulation during wake and sleep in humans. Respir Physiol Neurobiol. 2006, doi:10.1016/j.resp.2005.12.003d,
5. Straus C, Locher C, Zelter M, Derenne JP, Similowski T: Facilitation of the diaphragm response to transcranial magnetic stimulation by increases in human respiratory drive. J Appl Physiol. 2004, 97: 902-912. 10.1152/japplphysiol.00989.2003.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献