Author:
Olfe Jakob,Domanska Grazyna,Schuett Christine,Kiank Cornelia
Abstract
Abstract
Background
Laboratory routine procedures such as handling, injection, gavage or transportation are stressful events which may influence physiological parameters of laboratory animals and may interfere with the interpretation of the experimental results. Here, we investigated if female BALB/c mice derived from in-house breeding and BALB/c mice from a vendor which were shipped during their juvenile life differ in their HPA axis activity and stress responsiveness in adulthood.
Results
We show that already transferring the home cage to another room is a stressful event which causes an increased HPA axis activation for at least 24 hours as well as a loss of circulating lymphocytes which normalizes during a few days after transportation. However and important for the interpretation of experimental data, commercially available strain-, age- and gender-matched animals that were shipped over-night showed elevated glucocorticoid levels for up to three weeks after shipment, indicating a heightened HPA axis activation and they gained less body weight during adolescence. Four weeks after shipment, these vendor-derived mice showed increased corticosterone levels at 45-min after intraperitoneal ACTH challenge but, unexpectedly, no acute stress-induced glucocorticoid release. Surprisingly, activation of monoaminergic pathways were identified to inhibit the central nervous HPA axis activation in the vendor-derived, shipped animals since depletion of monoamines by reserpine treatment could restore the stress-induced HPA axis response during acute stress.
Conclusions
In-house bred and vendor-derived BALB/c mice show a different stress-induced HPA axis response in adulthood which seems to be associated with different central monoaminergic pathway activity. The stress of shipment itself and/or differences in raising conditions, therefore, can cause the development of different stress response phenotypes which needs to be taken into account when interpreting experimental data.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Physiology,General Medicine
Reference64 articles.
1. Wolfer DP, Litvin O, Morf S, Nitsch RM, Lipp HP, Wurbel H: Laboratory animal welfare: cage enrichment and mouse behaviour. Nature. 2004, 432 (7019): 821-822. 10.1038/432821a.
2. Koolhaas JM: Coping style and immunity in animals: making sense of individual variation. Brain Behav Immun. 2008, 22 (5): 662-667. 10.1016/j.bbi.2007.11.006.
3. Balcombe JP, Barnard ND, Sandusky C: Laboratory routines cause animal stress. Contemporary Topics in Laboratory Animal Science. 2004, 43 (6): 42-51.
4. Besch EL, Chou BJ: Physiological responses to blood collection methods in rats. Proceedings of the Society for Experimental Biology and Medicine. 1971, 138 (3): 1019-
5. Brown AP, Dinger N, Levine BS: Stress produced by gavage administration in the rat. Contemporary Topics in Laboratory Animal Science. 2000, 39 (1): 17-21.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献