Author:
Alsalamah Amal,Campo Rudi,Tanos Vasilios,Grimbizis Gregoris,Van Belle Yves,Hood Kerenza,Pugh Neil,Amso Nazar
Abstract
Abstract
Background
Ultrasonography is a first-line imaging in the investigation of women’s irregular bleeding and other gynaecological pathologies, e.g. ovarian cysts and early pregnancy problems. However, teaching ultrasound, especially transvaginal scanning, remains a challenge for health professionals. New technology such as simulation may potentially facilitate and expedite the process of learning ultrasound. Simulation may prove to be realistic, very close to real patient scanning experience for the sonographer and objectively able to assist the development of basic skills such as image manipulation, hand-eye coordination and examination technique.
Objective
The aim of this study was to determine the face and content validity of a virtual reality simulator (ScanTrainer®, MedaPhor plc, Cardiff, Wales, UK) as reflective of real transvaginal ultrasound (TVUS) scanning.
Method
A questionnaire with 14 simulator-related statements was distributed to a number of participants with differing levels of sonography experience in order to determine the level of agreement between the use of the simulator in training and real practice.
Results
There were 36 participants: novices (n = 25) and experts (n = 11) who rated the simulator. Median scores of face validity statements between experts and non-experts using a 10-point visual analogue scale (VAS) ratings ranged between 7.5 and 9.0 (p > 0.05) indicated a high level of agreement. Experts’ median scores of content validity statements ranged from 8.4 to 9.0.
Conclusions
The findings confirm that the simulator has the feel and look of real-time scanning with high face validity. Similarly, its tutorial structures and learning steps confirm the content validity.
Funder
Government of Saudi Arabia
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology,Surgery
Reference53 articles.
1. Weidenbach M, Rázek V, Wild F, Khambadkone S, Berlage T, Janousek J, Marek J (2009) Simulation of congenital heart defects: a novel way of training in echocardiography. Heart 95(8):636–641
2. Markowitz JE, Hwang JQ, Moore CL (2011) Development and validation of a web-based assessment tool for the extended focused assessment with sonography in trauma examination. J Ultrasound Med 30(3):371–375
3. Carter FJ, Schijven MP, Aggarwal R, Grantcharov T, Francis NK, Hanna GB, Jakimowicz JJ (2005) Consensus guidelines for validation of virtual reality surgical simulators. Surg Endosc 19:1523–1532
4. McDougall M, Corica FA, Boker JR, Sala LG, Stoliar G, Borin JF, Chu FT, Clayman RV (2006) Construct validity testing of a laparoscopic surgical simulator. J Am Coll Surg 202(5):779–787
5. Gilliam AD, Acton ST (2007) Echocardiographic simulation for validation of automated segmentation methods. Image Processing, ICIP 2007. IEEE Int Conf 5:529–532
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献