Establishment of a model of Mycoplasma hyopneumoniae infection using Bama miniature pigs

Author:

Gan Yuan,Xie Xing,Zhang Lei,Xiong Qiyan,Shao Guoqing,Feng ZhixinORCID

Abstract

AbstractMycoplasma hyopneumoniae (M. hyopneumoniae), is the primary aetiological agent of enzootic pneumonia leading to chronic respiratory disease prevalent worldwide. Conventional pigs are the only animals used for pathogenicity studies and vaccine evaluations of M. hyopneumoniae. Considering that the challenge animals have better genetic stability and a smaller body size to operate with, an alternative experimental animal model of M. hyopneumoniae infection with Bama miniature pigs was established. Nine seven-week-old snatch-farrowed, porcine colostrum-deprived (SF-pCD) Bama miniature pigs and nine conventional pigs were randomly divided into two infected groups (Bama miniature-infected (BI) and conventional-infected groups (CI), BI and CI, n = 6) and two control groups (Bama miniature control (BC) and conventional control (CC) groups, BC and CC, n = 3). Every piglet was tracheally inoculated with 5 × 108 CCU/mL containing 10% suspension of a stock of frozen lung homogenate from SF-pCD pigs infected with virulent strain JS or sterilized KM2 medium. Typical lung lesions appeared in all infected pigs after necropsy, and the mean gross lung lesions was 17.3 and 13.7 in groups of BI and CI. Serum IgG and nasal sIgA antibody titres were increased significantly. Cilia shedding and mucus staining increased greatly in JS-infected bronchi. Obvious reddish gross lesions and M. hyopneumoniae antigen were detected, especially apparently observed in group of BI. Moreover, DNA copies of M. hyopneumoniae from bronchoalveolar lavage fluid (BALF) of each JS-infected piglet reached more than 108, and M. hyopneumoniae could be re-isolated from each infected BALF. These results indicate that Bama miniature pigs could be used as an alternative and more maneuverable experimental infection model for M. hyopneumoniae and display typical clinical and pathological features consistent with those in conventional pigs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3