Vitamin C levels of selected Philippine indigenous berries as affected by fruit maturity and processing treatment
-
Published:2023-07-03
Issue:1
Volume:5
Page:
-
ISSN:2661-8974
-
Container-title:Food Production, Processing and Nutrition
-
language:en
-
Short-container-title:Food Prod Process and Nutr
Author:
Castillo-Israel Katherine Ann T.,Flandez Lloyd Earl L.,Tuaño Arvin Paul P.,Sartagoda Kristel June D.,Compendio Ma. Carisse M.
Abstract
AbstractThe Philippines as a tropical country is home to several indigenous berries that offer enough supply of health-promoting bioactive compounds like vitamin C. Vitamin C is an important micronutrient in the human diet that is usually supplied by fruits and vegetables. The amount of this vitamin in different products varies depending on the species, variety, maturity, processing, and other conditions. In this study, the vitamin C contents of selected Philippine indigenous berries such as bignay and lipote were evaluated as affected by fruit maturity and processing treatment. Fruits of two bignay (Antidesma bunius (Linn.) Spreng), varieties, ‘Common’ and ‘Kalabaw’, as well as of lipote (Syzygium polycephaloides (C. B. Rob.) Merr.), at three maturity stages (unripe, half-ripe, and fully ripe) were acquired in Laguna, Philippines. Samples were subjected to two processing treatments: blanched (90 ± 5 °C, 2 minutes) and steamed (105 ± 5 °C, 5 minutes), while control samples did not undergo processing treatment. The flesh and seeds were separated, lyophilized, extracted, and subjected to quantification of vitamin C using reversed-phase high performance liquid chromatography. Results showed that the vitamin C levels of both fruits were significantly affected by maturity, processing, and their interaction (P < .05). In general, a concomitant increase in vitamin C content was noted as fruit maturity progressed for both flesh and seeds (0.3 to 1.7-fold increase). Lipote seeds on the other hand, had decreased vitamin C content as maturity progresses (0.6-fold decrease). Moreover, blanching the fruits resulted in the highest retention of vitamin C in the fruit samples (247% at most). The general findings of this study indicated that the utilization of these indigenous berries for future functional product development must be accompanied by the blanching - as a pretreatment process, of the fully ripe fruits to attain enhanced vitamin C contents.
Graphical Abstract
Funder
Philippine Council for Health Research and Development
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Food Science
Reference62 articles.
1. Atkinson RG, Brummell DA, Burdon JN, Patterson KJ and Schaffer R. (2015). Fruit growth, ripening, and post-harvest physiology. Plants in action, https://www.asps.org.au/wp-content/uploads/Chapter-11-Fruit-growth-ripening-and-post-harvest-physiology. 2. Ayyanar, M., & Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pacific Journal of Tropical Biomedicine, 2(3), 240–246. 3. Badejo, A. A., Wada, K., Gao, Y., Maruta, T., Sawa, Y., Shigeoka, S., & Ishikawa, T. (2012). Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. Journal of Experimental Botany, 63(1), 229–239. https://doi.org/10.1093/jxb/err275. 4. Barata-Soares, A. D., Gomez, M. L. P. A., De Mesquita, C. H., & Lajolo, F. (2004). Ascorbic acid biosynthesis: A precursor study on plants. Brazilian Journal of Plant Physiology, 16(3), 147–154. https://doi.org/10.1590/s1677-04202004000300004. 5. Barcelo, J. M., Nullar, A. R. M., Caranto, J. K. P., Gatchallan, A., & Aquino, I. (2016). Antioxidant and antimutagenic activities of ripe Bignay (Antidesma bunius) crude fruit extract. Philippine e-Journal for Applied Research and Development, 6, 32–43.
|
|