Abstract
AbstractMannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M. haemolytica while minimizing the risk of drug residues. Cationic AMPs can kill bacteria through interactions with the anionic bacterial membrane. Human β-Defensin 3 (HBD3) and microcin J25 (MccJ25) are AMPs with potent activity against many Gram-negative bacteria. We tested the microbicidal activity of wild-type HBD3, three HBD3 peptide analogues (28 amino acid, 20AA, and 10AA) derived from the sequence of natural HBD3, and MccJ25 in vitro against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis. Since AMPs can act as chemoattractant we tested the chemotactic effect of HBD3, 28AA, 20AA, and 10AA peptides on bovine neutrophils in Boyden chamber. Minimum bactericidal concentration (MBC) assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogues with an MBC of 50 µg/mL. The 10AA analogue had MBC 6.3 µg/mL which is likely a result of lower final inoculum size. MccJ25 didn’t have significant bactericidal effect below an MBC < 100 µg/mL. Bovine neutrophils showed chemotaxis towards HBD3 and 20AA peptides (P < 0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-l-methionyl-l-leucyl-phenylalanine (fMLP). The data show that these peptides are effective against M. haemolytica and are chemotactic for neutrophils in vitro.
Funder
Natural Sciences and Engineering Research Council of Canada
Alberta Livestock and Meat Agency
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW (2010) The epidemiology of bovine respiratory disease: what is the evidence for preventive measures? Can Vet J 51:1351–1359
2. Loneragan GH, Dargatz DA, Morley PS, Smith MA (2001) Trends in mortality ratios among cattle in US feedlots. J Am Vet Med Assoc 219:1122–1127
3. Rice JA, Carrasco-Medina L, Hodgins DC, Shewen PE (2007) Mannheimia haemolytica and bovine respiratory disease. Anim Health Res Rev 8:117–128. https://doi.org/10.1017/S1466252307001375
4. Whiteley LO, Maheswaran SK, Weiss DJ, Ames TR, Kannan MS (1992) Pasteurella haemolytica A1 and bovine respiratory disease: pathogenesis. J Vet Intern Med 6:11–22
5. Czuprynski CJ, Leite F, Sylte M, Kuckleburg C, Schultz R, Inzana T, Behling-Kelly E, Corbeil L (2004) Complexities of the pathogenesis of Mannheimia haemolytica and Haemophilus somnus infections: challenges and potential opportunities for prevention? Anim Health Res Rev 5:277–282
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献