Abstract
AbstractCephalosporins are licensed for treatment of severe bacterial infections in different species. However, the effect of these antimicrobials on the fecal microbiome and potential spread of resistance-associated genes causes great concern. This highlights the need to understand the impact of cephalosporins on the porcine fecal microbiome and resistome. A combination of long-read 16S rRNA gene and shotgun metagenomic sequencing was applied to investigate the effect of conventional treatment with either ceftiofur (3 mg.kg−1 intramuscular, 3 consecutive days) or cefquinome (2 mg.kg−1 intramuscular, 5 consecutive days) on the porcine microbiome and resistome. Fecal samples were collected from 17 pigs (6 ceftiofur treated, 6 cefquinome treated, 5 control pigs) at four different timepoints. Treatment with ceftiofur resulted in an increase in Proteobacteria members on microbiome level, while on resistome level selection in TetQ containing Bacteroides, CfxA6 containing Prevotella and blaTEM-1 containing Escherichia coli was observed. Cefquinome treatment resulted in a decline in overall species richness (α-diversity) and increase in Proteobacteria members. On genus level, administration of cefquinome significantly affected more genera than ceftiofur (18 vs 8). On resistome level, cefquinome resulted in a significant increase of six antimicrobial resistance genes, with no clear correlation with certain genera. For both antimicrobials, the resistome levels returned back to the control levels 21 days post-treatment. Overall, our study provides novel insights on the effect of specific cephalosporins on the porcine gut microbiome and resistome after conventional intramuscular treatment. These results might contribute to better tailoring of the most ideal treatment strategy for some bacterial infections.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist 12:3903–3910
2. WHO (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva
3. Majumder MAA, Rahman S, Cohall D, Bharatha A, Singh K, Haque M, Gittens-St Hilaire M (2020) Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infect Drug Resist 13:4713–4738
4. EFSA (2023) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 21:e07867
5. WHO (2019) Critically important antimicrobials for human medicine. World Health Organization, Geneva
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献