RNAi-mediated silencing of Trichinella spiralis glutaminase results in reduced muscle larval infectivity

Author:

Gao Yuan,Meng Xiaoqing,Yang Xiao,Meng Shi,Han Caixia,Li Xiaoyun,Wang Shuang,Li Wei,Song MingxinORCID

Abstract

AbstractTrichinella spiralis is an important foodborne parasitic nematode distributed worldwide that infects humans and animals. Glutaminase (GLS) is an important gene in the glutamine-dependent acid resistance (AR) system; however, its role in T. spiralis muscle larvae (ML) remains unclear. The present study aimed to characterize T. spiralis GLS (TsGLS) and assess its function in T. spiralis ML AR both in vitro and in vivo using RNA interference. The results indicated that native TsGLS (72 kDa) was recognized by anti-rTsGLS serum at the muscle larvae stage; moreover, an immunofluorescence assay confirmed that TsGLS was located in the epidermis of ML. After silencing the TsGLS gene, the relative expression of TsGLS mRNA and the survival rate of T. spiralis ML were reduced by 60.11% and 16.55%, respectively, compared to those in the PBS and control groups. In vivo AR assays revealed that the worm numbers at 7 and 35 days post-infection (dpi) decreased by 61.64% and 66.71%, respectively, compared to those in the PBS group. The relative expression of TsGLS mRNA in F1 generation T. spiralis ML was reduced by 42.52%, compared to that in the PBS group. To the best of our knowledge, this is the first study to report the presence of the glutamine-dependent AR system in T. spiralis. Our results indicate that TsGLS plays a crucial role in the T. spiralis AR system; thus, it could be used as a potential candidate target molecule for producing vaccines against T. spiralis infection.

Funder

State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences

National Parasitic Resources Center

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3