luxS contributes to intramacrophage survival of Streptococcus agalactiae by positively affecting the expression of fruRKI operon
-
Published:2023-09-27
Issue:1
Volume:54
Page:
-
ISSN:1297-9716
-
Container-title:Veterinary Research
-
language:en
-
Short-container-title:Vet Res
Author:
Cao Qing, Dong Yuhao, Guo Changming, Ji Shuting, Nie Meng, Liu Guangjin, Wan Xihe, Lu Chengping, Liu YongjieORCID
Abstract
AbstractThe LuxS quorum sensing system is a widespread system employed by many bacteria for cell-to-cell communication. The luxS gene has been demonstrated to play a crucial role in intramacrophage survival of piscine Streptococcus agalactiae, but the underlying mechanism remains largely unknown. In this study, transcriptome analysis, followed by the luxS gene deletion and subsequent functional studies, confirmed that impaired bacterial survival inside macrophages due to the inactivation of luxS was associated with reduced transcription of the fruRKI operon, encoding the fructose-specific phosphotransferase system. Further, luxS was determined not to enhance the transcription of fruRKI operon by binding its promoter, but to upregulate the expression of this operon via affecting the binding ability of catabolite control protein A (CcpA) to the catabolite responsive element (cre) in the promoter of fruRKI. Collectively, our study identifies a novel and previously unappreciated role for luxS in bacterial intracellular survival, which may give a more thorough understanding of the immune evasion mechanism in S. agalactiae.
Funder
Jiangsu Agricultural Industry Technology System Natural Science Project of Colleges and Universities in Jiangsu Science and Technology Support Plan (Agriculture) Project of Taizhou Priority Academic Program Development of Jiangsu Higher Education Institutions Postgraduate Research & Practice Innovation Program of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary
Reference41 articles.
1. Chen SL (2019) Genomic insights into the distribution and evolution of group B Streptococcus. Front Microbiol 10:1447 2. Nanduri SA, Petit S, Smelser C, Apostol M, Alden NB, Harrison LH, Lynfield R, Vagnone PS, Burzlaff K, Spina NL, Dufort EM, Schaffner W, Thomas AR, Farley MM, Jain JH, Pondo T, McGee L, Beall BW, Schrag SJ (2019) Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance. JAMA Pediatr 173:224–233 3. Chen M, Li LP, Wang R, Liang WW, Huang Y, Li J, Lei AY, Huang WY, Gan X (2012) PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Vet Microbiol 159:526–530 4. Osman KM, Al-Maary KS, Mubarak AS, Dawoud TM, Moussa IMI, Ibrahim MDS, Hessain AM, Orabi A, Fawzy NM (2017) Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet Res 13:357 5. Chau ML, Chen SL, Yap M, Hartantyo SHP, Chiew PKT, Fernandez CJ, Wong WK, Fong RK, Tan WL, Tan BZY, Ng Y, Aung KT, Mehershahi KS, Goh C, Kang JSL, Barkham T, Leong AOK, Gutiérrez RA, Ng LC (2017) Group B Streptococcus infections caused by improper sourcing and handling of fish for raw consumption, Singapore, 2015–2016. Emerg Infect Dis 23:2002–2010
|
|