Multiple species animal movements: network properties, disease dynamics and the impact of targeted control actions

Author:

Cardenas Nicolas C.ORCID,Sykes Abagael L.,Lopes Francisco P. N.,Machado Gustavo

Abstract

AbstractInfectious diseases in livestock are well-known to infect multiple hosts and persist through a combination of within- and between-host transmission pathways. Uncertainty remains about the epidemic dynamics of diseases being introduced on farms with more than one susceptible host species. Here, we describe multi-host contact networks and elucidate the potential of disease spread through farms with multiple hosts. Four years of between-farm animal movement among all farms of a Brazilian state were described through a static and monthly snapshot of network representations. We developed a stochastic multilevel model to simulate scenarios in which infection was seeded into single host and multi-host farms to quantify disease spread potential, and simulate network-based control actions used to evaluate the reduction of secondarily infected farms. We showed that the swine network was more connected than cattle and small ruminants in both the static and monthly snapshots. The small ruminant network was highly fragmented, however, contributed to interconnecting farms, with other hosts acting as intermediaries throughout the networks. When a single host was initially infected, secondary infections were observed across farms with all other species. Our stochastic multi-host model demonstrated that targeting the top 3.25% of the farms ranked by degree reduced the number of secondarily infected farms. The results of the simulation highlight the importance of considering multi-host dynamics and contact networks while designing surveillance and preparedness control strategies against pathogens known to infect multiple species.

Funder

Fundo de desenvolvimento e defesa sanitária animal

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3