Author:
Tachibana Keisuke,Kobayashi Yumi,Tanaka Toshiya,Tagami Masayuki,Sugiyama Akira,Katayama Tatsuya,Ueda Chihiro,Yamasaki Daisuke,Ishimoto Kenji,Sumitomo Mikako,Uchiyama Yasutoshi,Kohro Takahide,Sakai Juro,Hamakubo Takao,Kodama Tatsuhiko,Doi Takefumi
Abstract
Abstract
Background
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. To identify human PPARs-responsive genes, we established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR and investigated the gene expression profiles of these cells.
Results
The expression of each introduced PPAR gene was investigated using the various concentrations of doxycycline in the culture media. We found that the expression of each PPAR subtype was tightly controlled by the concentration of doxycycline in these established cell lines. DNA microarray analyses using these cell lines were performed with or without adding each subtype ligand and provided much important information on the PPAR target genes involved in lipid metabolism, transport, storage and other activities. Interestingly, it was noted that while ligand-activated PPARδ induced target gene expression, unliganded PPARδ repressed these genes. The real-time RT-PCR was used to verify the altered expression of selected genes by PPARs and we found that these genes were induced to express in the same pattern as detected in the microarray analyses. Furthermore, we analysed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs. From the detailed analyses by reporter assays, the EMSAs, and ChIP assays, we determined the functional PPRE of the human adrp gene.
Conclusion
The results suggest that these cell lines are important tools used to identify the human PPARs-responsive genes.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献