Image caption generation using Visual Attention Prediction and Contextual Spatial Relation Extraction

Author:

Sasibhooshan Reshmi,Kumaraswamy Suresh,Sasidharan Santhoshkumar

Abstract

AbstractAutomatic caption generation with attention mechanisms aims at generating more descriptive captions containing coarser to finer semantic contents in the image. In this work, we use an encoder-decoder framework employing Wavelet transform based Convolutional Neural Network (WCNN) with two level discrete wavelet decomposition for extracting the visual feature maps highlighting the spatial, spectral and semantic details from the image. The Visual Attention Prediction Network (VAPN) computes both channel and spatial attention for obtaining visually attentive features. In addition to these, local features are also taken into account by considering the contextual spatial relationship between the different objects. The probability of the appropriate word prediction is achieved by combining the aforementioned architecture with Long Short Term Memory (LSTM) decoder network. Experiments are conducted on three benchmark datasets—Flickr8K, Flickr30K and MSCOCO datasets and the evaluation results prove the improved performance of the proposed model with CIDEr score of 124.2.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference62 articles.

1. Li S, Kulkarni G, Berg TL, Berg AC, Choi Y. Composing simple image descriptions using web-scale n-grams. In: Proceedings of the Fifteenth Conference on Computational Natural Language Learning, 2011, pp. 220–228

2. Lin D. An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, 1998, pp. 296–304

3. Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3156–3164.

4. Jing Z, Kangkang L, Zhe W. Parallel-fusion lstm with synchronous semantic and visual information for image captioning. J Vis Commun Image Represent. 2021;75(8): 103044.

5. Jia X, Gavves E, Fernando B, Tuytelaars T. Guiding the long-short term memory model for image caption generation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3