Rationale for using the velocity–time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings

Author:

Blanco PabloORCID

Abstract

Abstract Background Stroke volume (SV) and cardiac output (CO) are basic hemodynamic parameters which aid in targeting organ perfusion and oxygen delivery in critically ill patients with hemodynamic instability. While there are several methods for obtaining this data, the use of transthoracic echocardiography (TTE) is gaining acceptance among intensivists and emergency physicians. With TTE, there are several points that practitioners should consider to make estimations of the SV/CO as simplest as possible and avoid confounders. Main body With TTE, the SV is usually obtained as the product of the left ventricular outflow tract (LVOT) cross-sectional area (CSA) by the LVOT velocity–time integral (LVOT VTI); the CO results as the product of the SV and the heart rate (HR). However, there are important drawbacks, especially when obtaining the LVOT CSA and thus the impaction in the calculated SV and CO. Given that the LVOT CSA is constant, any change in the SV and CO is highly dependent on variations in the LVOT VTI; the HR contributes to CO as well. Therefore, the LVOT VTI aids in monitoring the SV without the need to calculate the LVOT CSA; the minute distance (i.e., SV × HR) aids in monitoring the CO. This approach is useful for ongoing assessment of the CO status and the patient’s response to interventions, such as fluid challenges or inotropic stimulation. When the LVOT VTI is not accurate or cannot be obtained, the mitral valve or right ventricular outflow tract VTI can also be used in the same fashion as LVOT VTI. Besides its pivotal role in hemodynamic monitoring, the LVOT VTI has been shown to predict outcomes in selected populations, such as in patients with acute decompensated HF and pulmonary embolism, where a low LVOT VTI is associated with a worse prognosis. Conclusion The VTI and minute distance are simple, feasible and reproducible measurements to serially track the SV and CO and thus their high value in the hemodynamic monitoring of critically ill patients in point-of-care settings. In addition, the LVOT VTI is able to predict outcomes in selected populations.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3