Abstract
Abstract
Background
While intra-arrest echocardiography can be used to guide and monitor chest compression quality, it is not currently feasible on the scene of out-of-hospital cardiac arrests. Rapid and automated sonographic localization of the heart may provide first-responders guidance to an optimal area of compression without requiring them to interpret ultrasound images. In this proof-of-concept porcine study, we sought to describe the performance of an automated ultrasound device in correctly identifying and tracing the borders of the heart in three distinct states: pre-arrest, arrest, and late arrest.
Methods
An automated ultrasound device (bladder scanner) was placed on the chests of 7 swine, along the left sternal border (4th–8th intercostal spaces). Scanner-generated images were recorded for each space during pre-arrest, arrest, and finally late arrest. 828 images of the LV and LV outflow tract were randomized and 150 (50/state) selected for analysis. Scanner tracings of the heart were then digitally obscured to facilitate tracing by expert reviewers who were blinded to the physiologic state. Reviewer tracings were compared to bladder scanner tracings; with concordance between these images determined via Sørensen–Dice index (SDI).
Results
When compared to human reviewers, the bladder scanner was able to identify and trace the borders during cardiac arrest. The bladder scanner performed best at the time of arrest (SDI 0.900 ± 0.059). As resuscitation efforts continued and time from initial arrest increased, the scanner’s performance decreased dramatically (SDI 0.597 ± 0.241 in late arrest).
Conclusion
An automated ultrasound device (bladder scanner) reliably traced porcine hearts during cardiac arrest. It is possible a device could be developed to indicate where compressions should be performed without requiring the operator to interpret ultrasound images. Further investigation into rapid, automated, sonographic localization of the heart to identify the area of compression in out-of-hospital cardiac arrest is warranted.
Funder
Saskatchewan Health Research Foundation
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Canadian Resuscitation Outcomes Consortium
University of Saskatchewan
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献