Overlooked poor-quality patient samples in sequencing data impair reproducibility of published clinically relevant datasets

Author:

Sprang MaximilianORCID,Möllmann Jannik,Andrade-Navarro Miguel A.,Fontaine Jean-FredORCID

Abstract

Abstract Background Reproducibility is a major concern in biomedical studies, and existing publication guidelines do not solve the problem. Batch effects and quality imbalances between groups of biological samples are major factors hampering reproducibility. Yet, the latter is rarely considered in the scientific literature. Results Our analysis uses 40 clinically relevant RNA-seq datasets to quantify the impact of quality imbalance between groups of samples on the reproducibility of gene expression studies. High-quality imbalance is frequent (14 datasets; 35%), and hundreds of quality markers are present in more than 50% of the datasets. Enrichment analysis suggests common stress-driven effects among the low-quality samples and highlights a complementary role of transcription factors and miRNAs to regulate stress response. Preliminary ChIP-seq results show similar trends. Quality imbalance has an impact on the number of differential genes derived by comparing control to disease samples (the higher the imbalance, the higher the number of genes), on the proportion of quality markers in top differential genes (the higher the imbalance, the higher the proportion; up to 22%) and on the proportion of known disease genes in top differential genes (the higher the imbalance, the lower the proportion). We show that removing outliers based on their quality score improves the resulting downstream analysis. Conclusions Thanks to a stringent selection of well-designed datasets, we demonstrate that quality imbalance between groups of samples can significantly reduce the relevance of differential genes, consequently reducing reproducibility between studies. Appropriate experimental design and analysis methods can substantially reduce the problem.

Funder

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3