Systematic identification of ACE2 expression modulators reveals cardiomyopathy as a risk factor for mortality in COVID-19 patients

Author:

Kaur Navchetan,Oskotsky Boris,Butte Atul J.,Hu ZichengORCID

Abstract

Abstract Background Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for SARS-CoV-2. It plays critical roles in both the transmission and the pathogenesis of COVID-19. Comprehensive profiling of ACE2 expression patterns could reveal risk factors of severe COVID-19 illness. While the expression of ACE2 in healthy human tissues has been well characterized, it is not known which diseases and drugs might be associated with ACE2 expression. Results We develop GENEVA (GENe Expression Variance Analysis), a semi-automated framework for exploring massive amounts of RNA-seq datasets. We apply GENEVA to 286,650 publicly available RNA-seq samples to identify any previously studied experimental conditions that could be directly or indirectly associated with ACE2 expression. We identify multiple drugs, genetic perturbations, and diseases that are associated with the expression of ACE2, including cardiomyopathy, HNF1A overexpression, and drug treatments with RAD140 and itraconazole. Our joint analysis of seven datasets confirms ACE2 upregulation in all cardiomyopathy categories. Using electronic health records data from 3936 COVID-19 patients, we demonstrate that patients with pre-existing cardiomyopathy have an increased mortality risk than age-matched patients with other cardiovascular conditions. GENEVA is applicable to any genes of interest and is freely accessible at http://genevatool.org. Conclusions This study identifies multiple diseases and drugs that are associated with the expression of ACE2. The effect of these conditions should be carefully studied in COVID-19 patients. In particular, our analysis identifies cardiomyopathy patients as a high-risk group, with increased ACE2 expression in the heart and increased mortality after SARS-COV-2 infection.

Funder

National Institute of Allergy and Infectious Diseases

NIH Office of the Director

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3