Author:
Xin Hongyi,Lian Qiuyu,Jiang Yale,Luo Jiadi,Wang Xinjun,Erb Carla,Xu Zhongli,Zhang Xiaoyi,Heidrich-O’Hare Elisa,Yan Qi,Duerr Richard H.,Chen Kong,Chen Wei
Abstract
AbstractIdentifying and removing multiplets are essential to improving the scalability and the reliability of single cell RNA sequencing (scRNA-seq). Multiplets create artificial cell types in the dataset. We propose a Gaussian mixture model-based multiplet identification method, GMM-Demux. GMM-Demux accurately identifies and removes multiplets through sample barcoding, including cell hashing and MULTI-seq. GMM-Demux uses a droplet formation model to authenticate putative cell types discovered from a scRNA-seq dataset. We generate two in-house cell-hashing datasets and compared GMM-Demux against three state-of-the-art sample barcoding classifiers. We show that GMM-Demux is stable and highly accurate and recognizes 9 multiplet-induced fake cell types in a PBMC dataset.
Publisher
Springer Science and Business Media LLC
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献