Enteric infection induces Lark-mediated intron retention at the 5′ end of Drosophila genes

Author:

Bou Sleiman Maroun,Frochaux Michael Vincent,Andreani Tommaso,Osman Dani,Guigo Roderic,Deplancke Bart

Abstract

Abstract Background RNA splicing is a key post-transcriptional mechanism that generates protein diversity and contributes to the fine-tuning of gene expression, which may facilitate adaptation to environmental challenges. Here, we employ a systems approach to study alternative splicing changes upon enteric infection in females from classical Drosophila melanogaster strains as well as 38 inbred lines. Results We find that infection leads to extensive differences in isoform ratios, which results in a more diverse transcriptome with longer 5′ untranslated regions (5′UTRs). We establish a role for genetic variation in mediating inter-individual splicing differences, with local splicing quantitative trait loci (local-sQTLs) being preferentially located at the 5′ end of transcripts and directly upstream of splice donor sites. Moreover, local-sQTLs are more numerous in the infected state, indicating that acute stress unmasks a substantial number of silent genetic variants. We observe a general increase in intron retention concentrated at the 5′ end of transcripts across multiple strains, whose prevalence scales with the degree of pathogen virulence. The length, GC content, and RNA polymerase II occupancy of these introns with increased retention suggest that they have exon-like characteristics. We further uncover that retained intron sequences are enriched for the Lark/RBM4 RNA binding motif. Interestingly, we find that lark is induced by infection in wild-type flies, its overexpression and knockdown alter survival, and tissue-specific overexpression mimics infection-induced intron retention. Conclusion Our collective findings point to pervasive and consistent RNA splicing changes, partly mediated by Lark/RBM4, as being an important aspect of the gut response to infection.

Funder

École Polytechnique Fédérale de Lausanne

SystemsX.ch

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3