Abstract
AbstractProtein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献