Abstract
AbstractPost hoc attribution methods can provide insights into the learned patterns from deep neural networks (DNNs) trained on high-throughput functional genomics data. However, in practice, their resultant attribution maps can be challenging to interpret due to spurious importance scores for seemingly arbitrary nucleotides. Here, we identify a previously overlooked attribution noise source that arises from how DNNs handle one-hot encoded DNA. We demonstrate this noise is pervasive across various genomic DNNs and introduce a statistical correction that effectively reduces it, leading to more reliable attribution maps. Our approach represents a promising step towards gaining meaningful insights from DNNs in regulatory genomics.
Funder
National Human Genome Research Institute
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley DR. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021;18(10):1196–203.
2. Karbalayghareh A, Sahin M, Leslie CS. Chromatin interaction-aware gene regulatory modeling with graph attention networks. Genome Res. 2022;32(5):930–44.
3. Chen KM, Wong AK, Troyanskaya OG, Zhou J. A sequence-based global map of regulatory activity for deciphering human genetics. Nat Genet. 2022;54(7):940–9.
4. Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, Fropf R, McAnany C, Gagneur J, Kundaje A, et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat Genet. 2021;53(3):354–66.
5. de Almeida BP, Reiter F, Pagani M, Stark A. DeepSTARR predicts enhancer activity from dna sequence and enables the de novo design of synthetic enhancers. Nat Genet. 2022;54(5):613–24.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献