1200 high-quality metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding

Author:

Wilkinson Toby,Korir Daniel,Ogugo Moses,Stewart Robert D.,Watson Mick,Paxton Edith,Goopy John,Robert ChristelleORCID

Abstract

Abstract Background The Boran (Bos indicus), indigenous Zebu cattle breed from sub-Saharan Africa, is remarkably well adapted to harsh tropical environments. Due to financial constraints and low-quality forage, African livestock are rarely fed at 100% maintenance energy requirements (MER) and the effect of sub-optimal restricted feeding on the rumen microbiome of African Zebu cattle remains largely unexplored. We collected 24 rumen fluid samples from six Boran cattle fed at sub-optimal and optimal MER levels and characterised their rumen microbial composition by performing shotgun metagenomics and de novo assembly of metagenome-assembled genomes (MAGs). These MAGs were used as reference database to investigate the effect of diet restriction on the composition and functional potential of the rumen microbiome of African cattle. Results We report 1200 newly discovered MAGs from the rumen of Boran cattle. A total of 850 were dereplicated, and their uniqueness confirmed with pairwise comparisons (based on Mash distances) between African MAGs and other publicly available genomes from the rumen. A genome-centric investigation into sub-optimal diets highlighted a statistically significant effect on rumen microbial abundance profiles and a previously unobserved relationship between whole microbiome shifts in functional potential and taxon-level associations in metabolic pathways. Conclusions This study is the first to identify 1200 high-quality African rumen-specific MAGs and provides further insight into the rumen function in harsh environments with food scarcity. The genomic information from the rumen microbiome of an indigenous African cattle breed sheds light on the microbiome contribution to rumen functionality and constitutes a vital resource in addressing food security in developing countries.

Funder

Bill and Melinda Gates Foundation

Biotechnology and Biological Sciences Research Council

Department for International Development, UK Government

Publisher

Springer Science and Business Media LLC

Reference65 articles.

1. Webb EC, Erasmus LJ. The effect of production system and management practices on the quality of meat products from ruminant livestock. South African J Anim Sci. 2013;43:415–23.

2. FAO. World agriculture towards 2015/2030: The 2012 revision. ESA Work Pap 2012. http://www.fao.org/3/a-ap106e.pdf.

3. Herrero M, Havlik P, McIntire J, Palazzo A, Valin H. African Livestock Futures: Realizing the potential of livestock for food security, poverty reduction and the environment in Sub-Saharan Africa. Off. Spec. Represent. UN Secr. Gen. Food Secur. Nutr. United Nations Syst. 2014. http://pure.iiasa.ac.at/id/eprint/11154.

4. Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol. 2002;42:319–26.

5. Edwards JE, Huws SA, Kim EJ, Lee MRF, Kingston-Smith AH, Scollan ND. Advances in microbial ecosystem concepts and their consequences for ruminant agriculture. Animal. 2008;2:653–60.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3