Differential chromatin accessibility landscape reveals structural and functional features of the allopolyploid wheat chromosomes

Author:

Jordan Katherine W.,He Fei,de Soto Monica Fernandez,Akhunova Alina,Akhunov EduardORCID

Abstract

Abstract Background Our understanding of how the complexity of the wheat genome influences the distribution of chromatin states along the homoeologous chromosomes is limited. Using a differential nuclease sensitivity assay, we investigate the chromatin states of the coding and repetitive regions of the allopolyploid wheat genome. Results Although open chromatin is found to be significantly enriched around genes, the majority of MNase-sensitive regions are located within transposable elements (TEs). Chromatin of the smaller D genome is more accessible than that of the larger A and B genomes. Chromatin states of different TEs vary among families and are influenced by the TEs’ chromosomal position and proximity to genes. While the chromatin accessibility of genes is influenced by proximity to TEs, and not by their position on the chromosomes, we observe a negative chromatin accessibility gradient along the telomere-centromere axis in the intergenic regions, positively correlated with the distance between genes. Both gene expression levels and homoeologous gene expression bias are correlated with chromatin accessibility in promoter regions. The differential nuclease sensitivity assay accurately predicts previously detected centromere locations. SNPs located within more accessible chromatin explain a higher proportion of genetic variance for a number of agronomic traits than SNPs located within more closed chromatin. Conclusions Chromatin states in the wheat genome are shaped by the interplay of repetitive and gene-encoding regions that are predictive of the functional and structural organization of chromosomes, providing a powerful framework for detecting genomic features involved in gene regulation and prioritizing genomic variation to explain phenotypes.

Funder

USDA National Institute of Food and Agriculture

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3