Abstract
AbstractMany existing pipelines for scRNA-seq data apply pre-processing steps such as normalization or imputation to account for excessive zeros or “drop-outs." Here, we extensively analyze diverse UMI data sets to show that clustering should be the foremost step of the workflow. We observe that most drop-outs disappear once cell-type heterogeneity is resolved, while imputing or normalizing heterogeneous data can introduce unwanted noise. We propose a novel framework HIPPO (Heterogeneity-Inspired Pre-Processing tOol) that leverages zero proportions to explain cellular heterogeneity and integrates feature selection with iterative clustering. HIPPO leads to downstream analysis with greater flexibility and interpretability compared to alternatives.
Publisher
Springer Science and Business Media LLC
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献