Comparing methods for constructing and representing human pangenome graphs

Author:

Andreace FrancescoORCID,Lechat Pierre,Dufresne Yoann,Chikhi Rayan

Abstract

Abstract Background As a single reference genome cannot possibly represent all the variation present across human individuals, pangenome graphs have been introduced to incorporate population diversity within a wide range of genomic analyses. Several data structures have been proposed for representing collections of genomes as pangenomes, in particular graphs. Results In this work, we collect all publicly available high-quality human haplotypes and construct the largest human pangenome graphs to date, incorporating 52 individuals in addition to two synthetic references (CHM13 and GRCh38). We build variation graphs and de Bruijn graphs of this collection using five of the state-of-the-art tools: , , , and . We examine differences in the way each of these tools represents variations between input sequences, both in terms of overall graph structure and representation of specific genetic loci. Conclusion This work sheds light on key differences between pangenome graph representations, informing end-users on how to select the most appropriate graph type for their application.

Funder

ANR Full-RNA

SeqDigger

Inception

PRAIRIE

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3