An evolutionary driver of interspersed segmental duplications in primates
-
Published:2020-08-10
Issue:1
Volume:21
Page:
-
ISSN:1474-760X
-
Container-title:Genome Biology
-
language:en
-
Short-container-title:Genome Biol
Author:
Cantsilieris Stuart, Sunkin Susan M., Johnson Matthew E., Anaclerio Fabio, Huddleston John, Baker Carl, Dougherty Max L., Underwood Jason G., Sulovari Arvis, Hsieh PingHsun, Mao Yafei, Catacchio Claudia Rita, Malig Maika, Welch AnneMarie E., Sorensen Melanie, Munson Katherine M., Jiang Weihong, Girirajan Santhosh, Ventura Mario, Lamb Bruce T., Conlon Ronald A., Eichler Evan E.ORCID
Abstract
Abstract
Background
The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human–ape gene families, nuclear pore interacting protein (NPIP).
Results
Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis.
Conclusions
LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution.
Funder
National Institutes of Health National Health and Medical Research Council National Human Genome Research Institute
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE. Recent segmental duplications in the human genome. Science. 2002;297:1003–7. 2. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 2001;11:1005–17. 3. Dougherty ML, Underwood JG, Nelson BJ, Tseng E, Munson KM, Penn O, Nowakowski TJ, Pollen AA, Eichler EE. Transcriptional fates of human-specific segmental duplications in brain. Genome Res. 2018;28:1566–76. 4. Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N, de Marchena J, Jin W-L, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell. 2012;149:923–35. 5. Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL, Novak AM, van den Bout A, Bishara A, Rosenkrantz JL, et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell. 2018;173:1356–69 e1322.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|