Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information

Author:

Liu Zhaoyang,Sun Dongqing,Wang ChenfeiORCID

Abstract

Abstract Background Cell-cell interactions are important for information exchange between different cells, which are the fundamental basis of many biological processes. Recent advances in single-cell RNA sequencing (scRNA-seq) enable the characterization of cell-cell interactions using computational methods. However, it is hard to evaluate these methods since no ground truth is provided. Spatial transcriptomics (ST) data profiles the relative position of different cells. We propose that the spatial distance suggests the interaction tendency of different cell types, thus could be used for evaluating cell-cell interaction tools. Results We benchmark 16 cell-cell interaction methods by integrating scRNA-seq with ST data. We characterize cell-cell interactions into short-range and long-range interactions using spatial distance distributions between ligands and receptors. Based on this classification, we define the distance enrichment score and apply an evaluation workflow to 16 cell-cell interaction tools using 15 simulated and 5 real scRNA-seq and ST datasets. We also compare the consistency of the results from single tools with the commonly identified interactions. Our results suggest that the interactions predicted by different tools are highly dynamic, and the statistical-based methods show overall better performance than network-based methods and ST-based methods. Conclusions Our study presents a comprehensive evaluation of cell-cell interaction tools for scRNA-seq. CellChat, CellPhoneDB, NicheNet, and ICELLNET show overall better performance than other tools in terms of consistency with spatial tendency and software scalability. We recommend using results from at least two methods to ensure the accuracy of identified interactions. We have packaged the benchmark workflow with detailed documentation at GitHub (https://github.com/wanglabtongji/CCI).

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3