Abstract
Abstract
Background
Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines.
Results
XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes.
Conclusions
We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome’s role in regulating gene expression and sex differences in humans.
Funder
Instrumentariumin Tiedesäätiö
Päivikki ja Sakari Sohlbergin Säätiö
Jenny ja Antti Wihurin Rahasto
Terveyden Tutkimuksen Toimikunta
Sigrid Juséliuksen Säätiö
University of Helsinki
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell. 2012;10:595–609.
2. Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Hakimian S, Zack JA, et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell. 2010;7:329–42.
3. Brenes AJ, Yoshikawa H, Bensaddek D, Mirauta B, Seaton D, Hukelmann JL, Jiang H, Stegle O, Lamond AI. Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Rep. 2021;35:109032.
4. Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global characterization of X chromosome inactivation in human pluripotent stem cells. Cell Rep. 2019;27(20–29):e23.
5. Anguera MC, Sadreyev R, Zhang Z, Szanto A, Payer B, Sheridan SD, Kwok S, Haggarty SJ, Sur M, Alvarez J, et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell. 2012;11:75–90.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献