Author:
Liu Minguo,Zhang Shuaisong,Li Wei,Zhao Xiaoming,Wang Xi-Qing
Abstract
Abstract
Background
Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples.
Results
Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number.
Conclusions
Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Qurat-Ul A, Awais R, Alia A, Tariq M, Muhammad I, Tariq M, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci. 2015;6:743.
2. Gedik MA, Günel T. The impact of climate change on edible food production: a panel data analysis. Acta Agr Scand B-S P. 2021;71:318–23.
3. Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology—problems and perspectives. Nat Rev Microbiol. 2019;17:391–6.
4. Hatfield JL, Antle J, Garrett KA, Izaurralde RC, Mader T, Marshall E, et al. Indicators of climate change in agricultural systems. Clim Change. 2020;163:1719–32.
5. Sultan S. Phenotypic plasticity for plant development, function and life history. Front Plant Sci. 2000;5:537–42.