Identifying yield-related genes in maize based on ear trait plasticity

Author:

Liu Minguo,Zhang Shuaisong,Li Wei,Zhao Xiaoming,Wang Xi-Qing

Abstract

Abstract Background Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. Results Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. Conclusions Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Qurat-Ul A, Awais R, Alia A, Tariq M, Muhammad I, Tariq M, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci. 2015;6:743.

2. Gedik MA, Günel T. The impact of climate change on edible food production: a panel data analysis. Acta Agr Scand B-S P. 2021;71:318–23.

3. Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P. Climate change microbiology—problems and perspectives. Nat Rev Microbiol. 2019;17:391–6.

4. Hatfield JL, Antle J, Garrett KA, Izaurralde RC, Mader T, Marshall E, et al. Indicators of climate change in agricultural systems. Clim Change. 2020;163:1719–32.

5. Sultan S. Phenotypic plasticity for plant development, function and life history. Front Plant Sci. 2000;5:537–42.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3