Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data

Author:

Fortelny Nikolaus,Bock ChristophORCID

Abstract

Abstract Background Deep learning has emerged as a versatile approach for predicting complex biological phenomena. However, its utility for biological discovery has so far been limited, given that generic deep neural networks provide little insight into the biological mechanisms that underlie a successful prediction. Here we demonstrate deep learning on biological networks, where every node has a molecular equivalent, such as a protein or gene, and every edge has a mechanistic interpretation, such as a regulatory interaction along a signaling pathway. Results With knowledge-primed neural networks (KPNNs), we exploit the ability of deep learning algorithms to assign meaningful weights in multi-layered networks, resulting in a widely applicable approach for interpretable deep learning. We present a learning method that enhances the interpretability of trained KPNNs by stabilizing node weights in the presence of redundancy, enhancing the quantitative interpretability of node weights, and controlling for uneven connectivity in biological networks. We validate KPNNs on simulated data with known ground truth and demonstrate their practical use and utility in five biological applications with single-cell RNA-seq data for cancer and immune cells. Conclusions We introduce KPNNs as a method that combines the predictive power of deep learning with the interpretability of biological networks. While demonstrated here on single-cell sequencing data, this method is broadly relevant to other research areas where prior domain knowledge can be represented as networks.

Funder

Austrian Science Fund

European Research Council

European Molecular Biology Organization

Publisher

Springer Science and Business Media LLC

Reference126 articles.

1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Adv Neural Inf Process Syst 25. Red Hook, NY: Curran Associates, Inc; 2012. p. 1097–105.

2. Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 2013;35:1915–29.

3. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recognit. 2015; https://doi.org/10.1109/CVPR.2015.7298594.

4. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29:82–97.

5. Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. 2013 IEEE Int Conf Acoust Speech Signal Process. Vancouver: IEEE; 2013. p. 6645–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3