Cotton pan-genome retrieves the lost sequences and genes during domestication and selection
-
Published:2021-04-23
Issue:1
Volume:22
Page:
-
ISSN:1474-760X
-
Container-title:Genome Biology
-
language:en
-
Short-container-title:Genome Biol
Author:
Li JianyingORCID, Yuan Daojun, Wang Pengcheng, Wang Qiongqiong, Sun Mengling, Liu Zhenping, Si Huan, Xu Zhongping, Ma Yizan, Zhang Boyang, Pei Liuling, Tu Lili, Zhu Longfu, Chen Ling-Ling, Lindsey Keith, Zhang Xianlong, Jin Shuangxia, Wang MaojunORCID
Abstract
AbstractBackgroundMillennia of directional human selection has reshaped the genomic architecture of cultivated cotton relative to wild counterparts, but we have limited understanding of the selective retention and fractionation of genomic components.ResultsWe construct a comprehensive genomic variome based on 1961 cottons and identify 456 Mb and 357 Mb of sequence with domestication and improvement selection signals and 162 loci, 84 of which are novel, including 47 loci associated with 16 agronomic traits. Using pan-genome analyses, we identify 32,569 and 8851 non-reference genes lost fromGossypium hirsutumandGossypium barbadensereference genomes respectively, of which 38.2% (39,278) and 14.2% (11,359) of genes exhibit presence/absence variation (PAV). We document the landscape of PAV selection accompanied by asymmetric gene gain and loss and identify 124 PAVs linked to favorable fiber quality and yield loci.ConclusionsThis variation repertoire points to genomic divergence during cotton domestication and improvement, which informs the characterization of favorable gene alleles for improved breeding practice using a pan-genome-based approach.
Funder
National Natural Science Foundation of China Postdoctoral Research Foundation of China
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. Wendel JF. New World tetraploid cottons contain Old-World cytoplasm. Proc Natl Acad Sci U S A. 1989;86(11):4132–6. https://doi.org/10.1073/pnas.86.11.4132. 2. Senchina DS. Rate variation among nuclear nenes and the age of polyploidy in Gossypium. Mol Biol Evol. 2003;20(4):633–43. https://doi.org/10.1093/molbev/msg065. 3. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 2017;49(4):579–87. https://doi.org/10.1038/ng.3807. 4. Fang L, Gong H, Hu Y, Liu C, Zhou B, Huang T, Wang Y, Chen S, Fang DD, Du X, et al. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol. 2017;18(1):33. https://doi.org/10.1186/s13059-017-1167-5. 5. Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, du X, Zhang T. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet. 2017;49(7):1089–98. https://doi.org/10.1038/ng.3887.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|