Author:
Ranek Jolene S.,Stanley Natalie,Purvis Jeremy E.
Abstract
Abstract
Background
Current methods for analyzing single-cell datasets have relied primarily on static gene expression measurements to characterize the molecular state of individual cells. However, capturing temporal changes in cell state is crucial for the interpretation of dynamic phenotypes such as the cell cycle, development, or disease progression. RNA velocity infers the direction and speed of transcriptional changes in individual cells, yet it is unclear how these temporal gene expression modalities may be leveraged for predictive modeling of cellular dynamics.
Results
Here, we present the first task-oriented benchmarking study that investigates integration of temporal sequencing modalities for dynamic cell state prediction. We benchmark ten integration approaches on ten datasets spanning different biological contexts, sequencing technologies, and species. We find that integrated data more accurately infers biological trajectories and achieves increased performance on classifying cells according to perturbation and disease states. Furthermore, we show that simple concatenation of spliced and unspliced molecules performs consistently well on classification tasks and can be used over more memory intensive and computationally expensive methods.
Conclusions
This work illustrates how integrated temporal gene expression modalities may be leveraged for predicting cellular trajectories and sample-associated perturbation and disease phenotypes. Additionally, this study provides users with practical recommendations for task-specific integration of single-cell gene expression modalities.
Funder
National Heart, Lung, and Blood Institute
Foundation for the National Institutes of Health
NIH Office of the Director
National Institute of General Medical Sciences
Directorate for Biological Sciences
Publisher
Springer Science and Business Media LLC
Reference97 articles.
1. Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 2018;360(6392):eaar3131. https://doi.org/10.1126/science.aar3131.
2. Crosse EI, Gordon-Keylock S, Rybtsov S, Binagui-Casas A, Felchle H, Nnadi NC, et al. Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development. Cell Stem Cell. 2020;27(5):822-39.e8.
3. Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell. 2021;184(3):810-26.e23.
4. Kaufmann M, Evans H, Schaupp AL, Engler JB, Kaur G, Willing A, et al. Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med (N Y). 2021;2(3):296-312.e8.
5. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24(12):1859–66.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献