Single-cell diploid Hi-C reveals the role of spatial aggregations in complex rearrangements and KMT2A fusions in leukemia

Author:

Xing Zhihao,Mai Huirong,Liu Xiaorong,Fu Xiaoying,Zhang Xingliang,Xie Lichun,Chen Yunsheng,Shlien Adam,Wen FeiqiuORCID

Abstract

Abstract Background Simple translocations and complex rearrangements are formed through illegitimate ligations of double-strand breaks of fusion partners and lead to generation of oncogenic fusion genes that affect cellular function. The contact first hypothesis states that fusion partners tend to colocalize prior to fusion in normal cells. Here we test this hypothesis at the single-cell level and explore the underlying mechanism. Results By analyzing published single-cell diploid Hi-C datasets, we find partner genes fused in leukemia exhibit smaller spatial distances than those fused in solid tumor and control gene pairs. Intriguingly, multiple partners tend to colocalize with KMT2A in the same cell. 3D genome architecture has little association with lineage decision of KMT2A fusion types in leukemia. Besides simple translocations, complex rearrangement-related KMT2A fusion genes (CRGs) also show closer proximity and belong to a genome-wide mutual proximity network. We find CRGs are co-expressed, co-localized, and enriched in the targets of the transcriptional factor RUNX1, suggesting they may be involved in RUNX1-mediated transcription factories. Knockdown of RUNX1 leads to significantly fewer contacts among CRGs. We also find CRGs are enriched in active transcriptional regions and loop anchors, and exhibit high levels of TOP2-mediated DNA breakages. Inhibition of transcription leads to reduced DNA breakages of CRGs. Conclusions Our results demonstrate KMT2A partners and CRGs may form dynamic and multipartite spatial clusters in individual cells that may be involved in RUNX1-mediated transcription factories, wherein massive DNA damages and illegitimate ligations of genes may occur, leading to complex rearrangements and KMT2A fusions in leukemia.

Funder

Guangdong Basic and Applied Basic Research Fund

Shenzhen Children's Hospital

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change;International Journal of Molecular Sciences;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3