Abstract
Abstract
Background
The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development.
Results
Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages.
Conclusions
Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.
Funder
Biotechnology and Biological Sciences Research Council
Japan Society for the Promotion of Science
Indian Council of Agricultural Research
Indian Ministry Tribal Affairs
Japan Science and Technology Agency
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci. 2015;112(28):8529–36. https://doi.org/10.1073/pnas.1424031112.
2. Avramova V, Sprangers K. Beemster GT. The maize leaf: another perspective on growth regulation. Trends Plant Sci. 2015;20(12):787–97. https://doi.org/10.1016/j.tplants.2015.09.002.
3. Kuroiwa T, Suzuki T, Ogawa K, Kawano S. The chloroplast nucleus - distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol. 1981;22:381–96.
4. Leech RM, Rumsby MG, Thomson WW. Plastid differentiation, acyl lipid, and fatty-acid changes in developing green maize leaves. Plant Physiol. 1973;52(3):240–5. https://doi.org/10.1104/pp.52.3.240.
5. Dean C, Leech RM. Genome expression during normal leaf development: I. Cellular and chloroplast numbers and DNA, RNA, and protein levels in tissues of different ages within a seven-day-old wheat leaf. Plant Physiol. 1982;69(4):904–10. https://doi.org/10.1104/pp.69.4.904.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献