Single-cell transcriptome reveals dominant subgenome expression and transcriptional response to heat stress in Chinese cabbage

Author:

Sun Xiaoxue,Feng Daling,Liu Mengyang,Qin Ruixin,Li Yan,Lu Yin,Zhang Xiaomeng,Wang Yanhua,Shen Shuxing,Ma Wei,Zhao Jianjun

Abstract

Abstract Background Chinese cabbage (Brassica rapa ssp. pekinensis) experienced a whole-genome triplication event and thus has three subgenomes: least fractioned, medium fractioned, and most fractioned subgenome. Environmental changes affect leaf development, which in turn influence the yield. To improve the yield and resistance to different climate scenarios, a comprehensive understanding of leaf development is required including insights into the full diversity of cell types and transcriptional networks underlying their specificity. Results Here, we generate the transcriptional landscape of Chinese cabbage leaf at single-cell resolution by performing single-cell RNA sequencing of 30,000 individual cells. We characterize seven major cell types with 19 transcriptionally distinct cell clusters based on the expression of the reported marker genes. We find that genes in the least fractioned subgenome are predominantly expressed compared with those in the medium and most fractioned subgenomes in different cell types. Moreover, we generate a single-cell transcriptional map of leaves in response to high temperature. We find that heat stress not only affects gene expression in a cell type-specific manner but also impacts subgenome dominance. Conclusions Our study highlights the transcriptional networks in different cell types and provides a better understanding of transcriptional regulation during leaf development and transcriptional response to heat stress in Chinese cabbage.

Funder

Innovative Research Group Project of Hebei Natural Science Foundation

National Natural Science Foundation of China

Key R&D Project of Hebei

Natural Science Foundation of Hebei

Post-doctoral Science Foundation of China

Post-doctoral Science Foundation of Hebei

Science and Technology Department of Hebei

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3