Abstract
Abstract
Background
Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5′–3′ movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5′ proximal AUG codon (i.e., the first-AUG rule).
Results
We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5′–3′ and 3′–5′ oscillations with a net 5′–3′ movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans.
Conclusions
Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献