scGWAS: landscape of trait-cell type associations by integrating single-cell transcriptomics-wide and genome-wide association studies

Author:

Jia Peilin,Hu Ruifeng,Yan Fangfang,Dai Yulin,Zhao ZhongmingORCID

Abstract

AbstractBackgroundThe rapid accumulation of single-cell RNA sequencing (scRNA-seq) data presents unique opportunities to decode the genetically mediated cell-type specificity in complex diseases. Here, we develop a new method, scGWAS, which effectively leverages scRNA-seq data to achieve two goals: (1) to infer the cell types in which the disease-associated genes manifest and (2) to construct cellular modules which imply disease-specific activation of different processes.ResultsscGWAS only utilizes the average gene expression for each cell type followed by virtual search processes to construct the null distributions of module scores, making it scalable to large scRNA-seq datasets. We demonstrated scGWAS in 40 genome-wide association studies (GWAS) datasets (average sample sizeN≈ 154,000) using 18 scRNA-seq datasets from nine major human/mouse tissues (totaling 1.08 million cells) and identified 2533 trait and cell-type associations, each with significant modules for further investigation. The module genes were validated using disease or clinically annotated references from ClinVar, OMIM, and pLI variants.ConclusionsWe showed that the trait-cell type associations identified by scGWAS, while generally constrained to trait-tissue associations, could recapitulate many well-studied relationships and also reveal novel relationships, providing insights into the unsolved trait-tissue associations. Moreover, in each specific cell type, the associations with different traits were often mediated by different sets of risk genes, implying disease-specific activation of driving processes. In summary, scGWAS is a powerful tool for exploring the genetic basis of complex diseases at the cell type level using single-cell expression data.

Funder

U.S. National Library of Medicine

National Institute of Dental and Craniofacial Research

Cancer Prevention and Research Institute of Texas

National Institute on Aging

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3