Abstract
AbstractBackgroundTartary buckwheat (Fagopyrum tataricum) is a nutritionally balanced and flavonoid-rich crop plant that has been in cultivation for 4000 years and is now grown globally. Despite its nutraceutical and agricultural value, the characterization of its genetics and its domestication history is limited.ResultsHere, we report a comprehensive database of Tartary buckwheat genomic variation based on whole-genome resequencing of 510 germplasms. Our analysis suggests that two independent domestication events occurred in southwestern and northern China, resulting in diverse characteristics of modern Tartary buckwheat varieties. Genome-wide association studies for important agricultural traits identify several candidate genes, includingFtUFGT3andFtAP2YT1that significantly correlate with flavonoid accumulation and grain weight, respectively.ConclusionsWe describe the domestication history of Tartary buckwheat and provide a detailed resource of genomic variation to allow for genomic-assisted breeding in the improvement of elite cultivars.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Innovative Research Group Project of the National Natural Science Foundation of China
European Union Horizon 2020 project ECOBREED
Planta SYST
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Joshi DC, Zhang K, Wang C, Chandora R, Khurshid M, Li J, et al. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: a genomics-driven perspective. Biotechnol Adv 2020;39:107479.
2. Joshi DC, Chaudhari GV, Sood S, Kant L, Pattanayak A, Zhang K, et al. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta. 2019;250:783–801.
3. Hunt HV, Shang X, Jones MK. Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veget Hist Archaeobot. 2018;27:493–506.
4. Bonafaccia G, Fabjan N. Nutritional comparison of tartary buckwheat with common buckwheat and minor cereals. Zb Bioteh Fak Univ Ljublj Kmet. 2003;81:349–55.
5. Xu P, Wang S, Yu X, Su Y, Wang T, Zhou W, et al. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res. 2014;264:173–80.
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献