Human A-to-I RNA editing SNP loci are enriched in GWAS signals for autoimmune diseases and under balancing selection

Author:

Zhang Hui,Fu Qiang,Shi Xinrui,Pan Ziqing,Yang Wenbing,Huang Zichao,Tang Tian,He Xionglei,Zhang RuiORCID

Abstract

AbstractBackgroundAdenosine-to-inosine (A-to-I) RNA editing plays important roles in diversifying the transcriptome and preventing MDA5 sensing of endogenous dsRNA as nonself. To date, few studies have investigated the population genomic signatures of A-to-I editing due to the lack of editing sites overlapping with SNPs.ResultsIn this study, we applied a pipeline to robustly identify SNP editing sites from population transcriptomic data and combined functional genomics, GWAS, and population genomics approaches to study the function and evolution of A-to-I editing. We find that the G allele, which is equivalent to edited I, is overrepresented in editing SNPs. Functionally, A/G editing SNPs are highly enriched in GWAS signals of autoimmune and immune-related diseases. Evolutionarily, derived allele frequency distributions of A/G editing SNPs for both A and G alleles as the ancestral alleles are skewed toward intermediate frequency alleles relative to neutral SNPs, a hallmark of balancing selection, suggesting that both A and G alleles are functionally important. The signal of balancing selection is confirmed by a number of additional population genomic analyses.ConclusionsWe uncovered a hidden layer of A-to-I RNA editing SNP loci as a common target of balancing selection, and we propose that the maintenance of such editing SNP variations may be at least partially due to constraints on the resolution of the balance between immune activity and self-tolerance.

Funder

National Natural Science Foundation of China

Guangdong Innovative and Entrepreneurial Research Team Program

the State Key Laboratory of Genetic Resources and Evolution

Publisher

Springer Science and Business Media LLC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3